SEO资讯

seo

「水分离设备推广方案」油水分离器方案

时间:2023-11-09 信途科技SEO资讯

本篇文章信途科技给大家谈谈水分离设备推广方案,以及油水分离器方案对应的知识点,希望对各位有所帮助,不要忘了收藏本站。

本文导读目录:

油水分离的方法及工作原理(化学法)

油水分离工艺的方法介绍

1离心分离法

离心分离法是使装有含油废水的容器高速旋转,形成离心力场,因固体颗粒、油珠与废水的密度不同,受到的离心力也不同,达到从废水中去除固体颗粒、油珠的方法。常用的设备是水力旋流分离器。

2浮选法

浮选法,又称气浮法,是国内外正在深入研究与不断推广的一种水处理技术。该法是在水中通入空气或其他气体产生微细气泡,使水中的一些细小悬浮油珠及固体颗粒附着在气泡上,随气泡一起上浮到水面形成浮渣(含油泡沫层) ,然后使用适当的撇油器将油撇去。该法主要用于处理隔油池处理后残留于水中粒经为10~60μm 的分散油、乳化油及细小的悬浮固体物,出水的含油质量浓度可降至20~30 mg/ L 。根据产生气泡的方式不同,气浮法又分为加压气浮、鼓气气浮、电解气浮等,其中应用最多的是加压溶气气浮法。

3生物氧化法

生物氧化法是利用微生物的生物化学作用使废水得到净化的一种方法。油类是一种烃类有机物,可以利用微生物的新陈代谢等生命活动将其分解为二氧化碳和水。含油废水中的有机物多以溶解态和乳化态,BOD5 较高,利于生物的氧化作用。对于含油质量浓度在30~50 mg/ L 以下、同时还含有其他可生物降解的有害物质的废水,常用生化法处理,主要用于去除废水中的溶解油。含油废水常见的生化处理法有活性污泥法、生物过滤法、生物转盘法等。活性污泥法处理效果好,主要用于处理要求高而水质稳定的废水。生物膜法与活性污泥法相比,生物膜附着于填料载体表面,使繁殖速度慢的微生物也能存在,从而构成了稳定的生态系统。但是,由于附着在载体表面的微生物量较难控制,因而在运转操作上灵活性差,而且容积负荷有限。

4重力分离法

重力分离法是典型的初级处理方法,是利用油和水的密度差及油和水的不相溶性,在静止或流动状态下实现油珠、悬浮物与水分离。分散在水中的油珠在浮力作用下缓慢上浮、分层,油珠上浮速度取决于油珠颗粒的大小,油与水的密度差,流动状态及流体的粘度。 2 过滤法

过滤法是将废水通过设有孔眼的装置或通过由某种颗粒介质组成的滤层,利用其截留、筛分、惯性碰撞等作用使废水中的悬浮物和油分等有害物质得以去除。常用的过滤方法有3 种:分层过滤、隔膜过滤和纤维介质过滤。膜过滤法又称为膜分离法[5 ] ,是利用微孔膜将油珠和表面活性剂截留,主要用于除去乳化油和某些溶解油。滤膜包括超滤膜、反渗透膜和混合滤膜等。膜材料包括有机膜和无机膜两种,常见的有机膜有醋酸纤维膜、聚砜膜、聚丙烯膜等,常用的无机膜有陶瓷膜、氧化铝、氧化钴、氧化钛等。乳化油处于稳定状态,用物理方法或者化学方法很难将其分离。随着膜科学的飞速发展,膜过程处理乳化油污水已逐步被人们接受并在工业中应用。

5 化学法

化学法又称药剂法,是投加药剂由化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的一种方法。常用的化学方法有中和、沉淀、混凝、氧化还原等。对含油废水主要用混凝法。混凝法是向含油废水中加入一定比例的絮凝剂,在水中水解后形成带正电荷的胶团与带负电荷的乳化油产生电中和,油粒聚集,粒径变大,同时生成絮状物吸附细小油滴,然后通过沉降或气浮的方法实现油水分离。常见的絮凝剂有聚合氯化铝(PAC) 、三氯化铁、硫酸铝、硫酸亚铁等无机絮凝剂和丙烯酰胺、聚丙烯酰胺( PAM) 等有机高分子絮凝剂,不同的絮凝剂的投加量和pH 值适用范围不同。此法适合于靠重力沉降不能分离的乳化状态的油滴和其他细小悬浮物。

6吸附法

吸附法是利用亲油性材料,吸附废水中的溶解油及其他溶解性有机物。最常用的吸油材料是活性炭,可吸附废水中的分散油、乳化油和溶解油。由于活性炭的吸附容量有限(对油一般为30~80 mg/ g) ,成本高,再生困,一般只用作含油废水多级处理的最后一级处理,出水含油质量浓度可降至0. 1~0. 2 mg/ L 。1976 年湖南长岭炼油厂在废水处理中就采用了活性碳吸附进行深度处理。国内外对于新型吸附剂的研制也取得了一些有益的成果。研究发现,片状石墨能吸附由海上油轮漏油事件释放的重油并易于与水分离。吸附树脂是近年来发展起来的一种新型有机吸附材料,吸附性能好,再生容易,有逐步取代活性炭的趋势。

做污水处理设备,怎么去把产品销售出去,

基本上,建筑污水没有处理要求,没有什么市场。

工业污水的话,都是靠慢慢建立客户源,需要时间。

可以考虑和设计研究院合作,给他们分红,让他们在设计的时候把你的系统设计进去。但是这一般都是对小系统有用。因为买与不买由业主决定。业主通常会在大设备的选择上自己做主。

河水净化设备

杭州永洁达净化科技有限公司 河水净化设备

一:河水净化设备设计方案

一、河水净化设备方案主要依据

1、原水水质:TDS≤1200PPM;

2、进水水源:地下水,井水;

3、出水水质:生活用水(无色度,异味,达到生活用水标准。)

4、设计界限:以原地下水进入系统入口至设备产品水出口,其它情况将在合同书中确定;

5、生产生活用水设计规范。

3、河水净化设备系统配置:井水自吸泵,曝气装置,沉淀池,原水增压泵,除铁除锰器,活性碳过滤器, 净水池。

4、河水净化设备系统产水率:95%。

三.河水净化设备系统对外界要求

1:供水:水源为地下水或井水。

2:供电:根据我方提供的容量,将路面电源送至我方指定的电源控制箱上。

四.河水净化设备工艺流程

井水自吸泵→曝气装置→沉淀池→原水增压泵→除铁除锰器→活性碳过滤器→净水池→用水点

五.河水净化设备工艺说明

1、河水净化设备曝气装置

井水经自吸泵加压后进入曝气装置,它主要是让井水与空气中的氧气充分的接触;利用氧化方法将水中低价铁离子和低价锰离子氧化成高价铁离子和高价锰离子而迅速沉淀的过程。

2、河水净化设备沉淀池

经过曝氧后的井水到达沉淀池沉淀。(它主要起缓冲的作用,让水有足够的时间沉淀)

3、河水净化设备除铁除锰系统

1. 河水净化设备系统为一台玻璃钢除铁除锰器.规格为直径12〃高52〃

沉淀后的清水经过增压泵加压后进入除铁除锰系统,主要去除水中的泥沙、铁锈、锰、红虫、藻类、一些金属物质、各种悬浮物等固体物质,系统其正常进行条件如下:操作压力为0.3Mpa,平均过滤速度为15m/hr,,该设备操作简单,无须人员看管。

2、河水净化设备活性碳过滤系统

本系统设置为一台不锈钢活性碳过滤器,规格为.过滤器内填精制的果壳型活性碳,在正常工作情况时,流速15m/hr,

. 活性碳过滤器广泛应用在工业及生活用水的净化,由于活性碳的比表面积很大,井水经砂滤机后进入碳滤机吸附器。活性碳可以除去水中的色素、异味,不仅如此,由于活性碳有大量的羟基和羟基官能团,可以对各种性质的有机物进行化学吸附,加之静电引力作用,它还可以去除水中阳树脂交换剂有害的物质(如氯类),从而大大提高了系统的除盐能力。活性碳还能去除水中63%-86%胶体物质;50%左右的铁;以及47%-60%的有机物。该设备操作简单,无须人员看管

水处理设备怎么推广,才是有效的?

小编莱特莱德觉得要先了解到设备的基本信息,之后再去做相对应的推广

做一个泥水分离装置技术路线方案怎么写

化粪池必须设排气管,不然当污水排出管堵塞时,里面的沼气压力过大时会使污水向上逆流。化粪池(huàfènchí)是处理粪便并加以过滤沉淀的设备。其原理是固化物在池底分解,上层的水化物体,进入管道流走,防止了管道堵塞,给固化物体(粪便等垃圾)有充足的时间水解。 化粪池(septic tank)指的是将生活污水分格沉淀,及对污泥进行厌氧消化的小型处理构筑物。 化粪池是基本的污泥处理设施,同时也是生活污水的预处理设施,它的作用表现在:保障生活社区的环境卫生,避免生活污水及污染物在居住环境的扩散。在化粪池厌氧腐化的工作环境中,杀灭蚊蝇虫卵。临时性储存污泥,有机污泥进行厌氧腐化,熟化的有机污泥可作为农用肥料。生活污水的预处理(一级处理),沉淀杂质,并使大分子有机物水解,成为酸、醇等小分子有机物,改善后续的污水处理。化粪池的技术类型:泥水混合传统化粪池的应用已经有一百多年历史,技术路线是污水和污泥接触的模式,沉积的污泥消化降解产生沼气、二氧化碳、硫化氢等消化气,消化气的上浮作用对污泥产生扰动,消化气对污泥的扰动作用能够让污泥与生物菌群的混合更充分,有助于消化降解。但底部污泥随消化气上升,气泡逸出后,污泥又重新向下沉淀,这些上升和沉淀的污泥又重新污染污水。在化粪池污水与污泥接触混合的技术模式下,影响化粪池的沉淀及出水水质,需要延长污水停留时间来改善沉淀效果及出水水质,污水停留时间一般为12-24小时。三相分离三相分离化粪池技术是在传统化粪池的基础上,保留了化粪池中泥水混合的优点,增加了“污水、污泥、消化气”三相分离的技术,在化粪池的出水端设置三相分离装置,使出水端的污泥、消化气与污水处理过程分离,避免气浮现象对污水处理的干扰。出水端的沉淀槽参照平流沉淀池技术标准,污水沉淀时间2小时之内。技术对比化粪池的容积由污水容积和污泥容积构成,三相分离化粪池中污水停留时间4-6小时,相对于泥水混合化粪池中污水停留时间12-24小时,通过缩短污水停留时间而节省了有效容积,所节省有效容积能够存储更多的污泥。

高含水期油田原油预分水技术

胡长朝 党 伟

(中国石化石油勘探开发研究院,北京 100083)

摘 要 国内外大部分油田已进入高含水开发期,原油综合含水率高达90%以上,造成原有地面系统超负荷运行,改造投资、能耗及运行成本急剧增大。针对这一问题,部分油田开始在集输系统的接转站实施预分水,分出的污水就地处理达标后回注地层。本文从技术原理、优缺点等方面对国内外普遍应用的预分水技术进行了评述,并对其未来的发展进行了展望。

关键词 预分水 高含水期 展望

Predewatering Technology for Crude Oil of

High Water-cut Oilfield

HU Changchao,DANG Wei

(Exploration and Production Research Institute,SINOPEC,

Beijing 100083,China)

Abstract Most of domestic and foreign oilfields have entered the high water-cut stage and the comprehensive water-cut of crude oil has reached as high as 90% or above,which leads to the overload operation of the existing surface system and the rapid increases of the reconstruction investment,the energy consumption and the operating cost.For this problem,some oilfields begin to carry out predewatering at block stations of gathering and transferring systems,and the seperated sewage is treated in situ and reinjected to the ground after reaching the water quality standard.The paper reviews the predewatering technology commonly used at home and abroad from the aspects such as technical principle,advantages and disadvantages,and looks into its future development.

Key words predewatering;high water-cut stage;prospect

国内外油田开发都经历着产油量上升阶段、油量达到高峰稳产阶段和油井见水、产量递减3个阶段[1]。目前,我国东部主力油田大部分已进入高含水或特高含水开采期,原油综合含水率已超过90%,有的油田甚至高达98%,油田开发已由 “采油” 变为 “采水”。在高含水期,含水率的小幅上升会导致液量的大幅度增加。以胜利油田为例,全油田综合含水率在91%~92%时,含水率每增加0.1%,液量每年就增加约375×104 t,增幅达1.25%。由于地面处理系统利用的是中、低含水期的生产设施,因而不能适应产液量剧增和以水为主的处理需求,主要存在以下问题:

1)集输和污水处理系统处理能力明显不足,超负荷运行,处理效率低下。

2)原有设施需不断扩建,改造工程量和投资费用过大,并且原有流程的改造也十分困难。

3)能耗及成本增大。在油田中、低含水期开发阶段建设的原油脱水站,大多采用两段脱水工艺,高含水原油集输至集中处理站后全部进入加热炉加热,大部分热能消耗在对污水的加热升温上。在一个进站液量为1700×104 m3/a、综合含水率为95%的联合站,将来液升温7℃,仅一次加热炉的燃油消耗就达1.45×104t/a以上,其中污水吸收的热能大约占97%,造成了能量的极大浪费[2]。脱出的污水需返输至注水站,污水往返输送成本、降回压泵能耗、运行管理维护成本等增大。另外,随着含水率的上升,油井排来液的温度越来越低,热量及化学助剂等的消耗进一步增大,导致吨液、吨油处理成本急剧增加。

4)大量污水的循环加速了管道和设备的腐蚀,缩短了设备的使用寿命。

实施预分水,尽早把污水分离出来,减少污水流动环节,可有效解决以上问题,大幅降低能耗、成本和改造投资,提高经济效益。因此,国内外油田一方面加紧研究适应高含水期油田生产需要的预分水技术,成功研制出了末端分相管、水力旋流器等高效预分水装置;另一方面对原有流程进行配套改造,增加预分水环节,由采出液全液在联合站集中加热脱水改为在各井场、分压泵站、接转站进行低温预分水,分出的污水就地处理达标后回注地层,剩余低含水油再送至联合站集中加热处理。目前,国内外常用的预分水技术主要有三相分离技术、旋流分离技术、末端分相技术、斜管预分水技术和低温破乳技术。

1 三相分离技术

三相分离器的技术原理是油水混合液经设备进口进入设备,经进口分气包预脱气后进入水洗室,在水洗室中油水混合液发生碰撞、摩擦等降低界面膜的水洗过程分离出大部分的游离水,没有分离的混合液经分配器布液和波纹板整流后进入沉降室,并在沉降室进行最终的油水分离,达到脱水的目的(图1)。三相分离器综合应用了来液预脱气、浅池布液、水洗破乳、高效聚集整流和油水界面控制等数项技术,在国内外油田得到广泛应用,其中尤以我国应用水平最高[3]。

图1 高效三相分离器原理图

我国陆上油田大多将三相分离器改造为预分水器进行预分水。河南油田规划设计研究院根据高含水期油田原油物化特性,研制出了HNS型三相分离器,其外形尺寸为φ3000mm×10608mm×10mm,分离器内分为预脱气室、稳流室、水洗室、沉降分离室、油室、水室、气相空间、气包等部分。该型三相分离器采用了气体预分离、二次捕雾技术和活性水水洗强化破乳技术,提高了油水分离效率;利用双隔板结构U形管压力平衡原理,实现了油水界面控制;合理配置设备与工艺控制的有机结合,提高了自动化水平。将HNS型三相分离器改造为预分水器,其处理能力为同规格传统设备的4~8倍,针对河南油田密度为0.85g/cm3 的轻质原油,经一次预分水处理,出口原油含水率在0.4%以下,污水含油低于500mg/L[4]。

胜利油田 “十一五” 期间在33座联合站推广应用高效三相分离器152台,处理进站液量67.55×104m3/d,原油含水率从85%~90%降至50%~60%,每天节省加热燃料900t左右,取得了良好的节能降耗效果。以坨三站为例,进站液量为3.5×104m3/d,应用高效三相分离器预分水后,分离器出油含水率由94%降低到15%,加热液量下降了90%,年节约燃料油1068t。对于边远小断块油田,胜利油田将原来的高含水全液外输至较远联合站、注水水源回调改为就地预分水处理后回注、低含水油外输,在15座接转站应用三相分离器32台,分出水6.98×104m3/d,污水就地回注后实现污水替代清水0.6×104m3/d,每天减少3.6×104m3污水往返输送,节约输送电耗3.75×104kW·h,年降低加热能耗7.06×1014J,同时解决了部分油田欠注的问题,缓解了污水回灌压力。

三相分离器用作预分水器,具有处理能力大、分离效率高、运行工况稳定、管理方便、自动化程度高等特点,含水原油经一段处理后获合格净化原油标准;但三相分离器是以出油含水率达到一定指标为目的设计的设备,污水分离净化的有效空间不足,造成除油效率低,分出水含油指标一般控制在1000mg/L以下,实际运行中水中含油在500 ~1000mg/L之间,后续污水处理系统需采用二级除油加过滤的处理工艺,投资、占地和运行费用均较高。

2 旋流分离技术

图2 水力旋流器原理图

水力旋流器的工作原理是在油水存在密度差的情况下,使含油污水在水泵或其他外加压力的作用下,从切线方向进入旋流器后高速旋转,在离心力的作用下,水向器壁运动,形成向下的外旋流,通过旋流器底部出口流出(底流);油向旋流器轴心处运动,形成螺旋上升的内旋流油核,由上端溢流而出(溢流),最终实现油水分离,如图2所示[5,6]。

旋流分离技术是油田高含水期节能降耗行之有效的工艺手段。水力旋流器可以使高含水原油在不加热的条件下实现游离水脱除,节约大量的燃料,欧美国家海上油田广泛用作预分水器,陆上油田基本不单独使用,目前发展方向主要是作为前端预处理器与其他技术组合应用。旋流分离技术在国内尚处于研究开发阶段,未得到大规模应用。胜利油田开展了旋流分离技术试验,研制了以旋流和沉降相结合的试验设备,其工作原理为油、气、水混合液进入旋流筒,靠离心旋转分离和重力作用,脱除90%以上的伴生气,该气体与分水器内的少量气体一起经二次除液后,由压力控制进入气体系统,油水混合液经配流管均匀进入分离区,再经整流迷宫板缓冲整流进入沉降区沉降;在沉降区内,靠加热器进一步激发破乳剂的活性,使乳化液破乳分离,油滴聚结上浮,脱水原油经隔板进入油室,再经液位控制流出分水器。该试验设备的技术关键为:(1)分水器进入端设计了预分离旋流器,采用预分离技术,将混合液中95%以上的气体预先分离;(2)设计了配流管和整流迷宫板,使高效分水器内流场稳定,便于油水分离;(3)分水器内部设有加热器,既能激发破乳剂活性,又能避免对底部污水的加温;(4)设计的水位调节器能自动调节分离器内的油水界面,处理后污水含油基本在500mg/L左右。江汉油田进行了两级旋流分离工艺研究,两台旋流器串联应用,一级进行预分水,二级对一级分出的水进行除油处理。现场试验后,马王庙油田马56站一级旋流器分出污水占总液量的50%以上,二级旋流器除油后污水含油在100mg/L以下[7]。

水力旋流器用作预分水设备,具有质量轻、占地面积小、单位容积处理能力大、分离效率高、分离速度快、投资小、构造简单、本身无活动部件、易于安装和维修等优点,但也存在着许多缺点,如旋流管易磨损、气体影响分离效果、提升和旋流造成原油乳化不易分离、出水水质不平稳、动力消耗较大、可有效分离游离水却对乳化水基本没有分离能力、分出水含油偏高(1000mg/L左右)等,难以得到推广应用。

3 末端分相技术

末端分相管是一段直径加粗了的末端集输管线,长约45m(长度取决于原油的特性和预分水效果),直径1020~1220mm,两端用球盖封堵,主要用于高含水油田原油的预分水和污水净化。末端分相管在管内完成油气水分离的5个过程(流体水力搅拌、质量交换、扩散、重力沉降、在聚结器内使水滴聚集),同时具备多种装置的功能(Ⅰ级分离装置、预分水装置、预净水装置),在前苏联得到较多的应用。西西伯利亚地区的塔什金诺沃油田在丛式井井场或增压泵站上配备了两根直径1020mm、长250m的末端分相管,液体处理能力达30000~32000m3/d,每天可分出7800~9000m3的游离水,游离水分出率达60%,而出口原油含水率仅为9.3%~12.5%。

末端分相管能在油田配套工艺流程中取代造价昂贵、数量众多的Ⅰ级分离装置和脱水装置,大幅度降低投资(可降低总投资25%~40%),具有制造与控制操作简便、液体处理能力大的特点,可用作小型和边远油田的预分水器,缺点是分离效率较低,分出水含油偏高。

4 斜管预分水技术

斜管预分水器的工作原理是自然沉降结合浅池分离,主要用于分出游离水,欧美称之为仰角式游离水脱除器。其是将卧式和立式游离水分离器相结合,采用仰角设计,克服了立式容器内油水界面覆盖面积小、卧式容器油水界面与水出口距离短以及分离时间不充分的缺点。来液进口位于管式容器的上行端,水中油珠能聚集并爬高上行至顶端油出口,而水下沉至底端水出口排出。

斜管预分水器结构简单,造价低,占地面积小,主要用于对分出水含油要求不高的掺水油田,将分出的污水就地回掺,以降低集输系统掺水能耗和管线投资,并减少联合站的运行负荷。俄罗斯在其高含水和特高含水原油集输中广泛采用斜管预分水器(直径为1220mm,倾斜角度在45°左右,液量处理能力为10000~15000m3/d),用于脱除80%的游离水。欧美国家也开发并推广应用了该类设备,但在斜管仰角设计上采取了较低角度,为12°[8]。斜管预分水器目前在国内没有得到广泛应用,仅河南油田1个计量站应用,分出水水质无法控制,出水含油一般在1000mg/L以上,分离效率较低。

5 低温破乳技术

利用低温破乳技术来进行预分水是比较经济的。加拿大研制的原油声波破乳设备,可安装在高含水油井管径小于4in的集油管线上,使处理后的稠油含水率最低降至1%,节省药剂投加量50%。美国的微波破乳MST模块化撬装设备在现场试验中也取得了成功,效果显著[8]。

近些年来,随着注聚等3次采油工艺的应用,采出液物化性质发生了较大变化,且乳化现象十分严重,导致预分水难度加大。各油田为了弥补机械方法的不足,普遍开始重视高效设备和化学助剂的综合应用,即在原有预分水工艺的基础上,投加预脱水剂,使高含水期大量污水在较低温度和较低化学药剂加入量条件下得到有效分离。H1联原油黏度高,污水含油量高,乳化严重,采用机械方法进行预脱水有诸多不便,通过选用高效预脱水剂,在进站温度下,采出液中80%以上的污水实现预分离,分出的污水含油在100mg/L左右,可直接进入污水处理系统,节省了大量的天然气和破乳剂,并且工艺改动量小、投资少、易推广应用[9]。辽河油田通过大量室内试验,研制出了预脱水剂,在原有设备基础上优化工艺流程,在进站不加热的条件下分出游离水,再进行后续处理,取消一段加热,节省了大量破乳剂,经济效益明显,全公司推广后,每年可节省操作费用4000万~5000万元。

化学药剂的引入,导致预分水费用增加,后续污水处理难度加大,如何趋利避害,有待深入研究。

6 预分水技术的发展方向

目前各油田采用的预分水技术在一定程度上起到了预分水的效果,但这些技术的主要控制指标是原油含水,对分出水中含油则限制较少,造成分出污水含油高达1000mg/L左右,这样污水处理系统需要进行一级除油、二级沉降加过滤的复杂处理工艺才能使污水水质达标,污水系统占地、设施投资和运行费用很高。预分水技术未来主要向以下方向发展:

1)加速高效油水分离设备、分离技术的研制和推广。

2)在研制高效预分水设备时,更加注重降低分出污水中含油指标的研究。

3)向各种技术的集成化、一体化、小型化、低投资和低成本方向发展,如旋流、气浮、沉降、聚结等的优化集成,物理、化学和生物方法的综合应用等,以发挥不同技术、手段的优点,扩宽预分水技术的使用范围,提高预分水设备的稳定性和处理效果。

基于此,笔者正在开展新型一体化预分水除油技术研究,通过综合应用旋流、气浮、聚集和三相分离等技术,将预分水与污水除油功能有机结合,形成一体化装置,在高效预分水的同时,强化污水除油功能,改善出水水质,使出水含油降到15mg/L以下,从而简化后段处理工艺,减少投资和运行费用等。该项研究目前进展顺利,室内试验已达到预期效果,现场试验正按计划进行,专利成果也正在申报中。

参考文献

[1]胡世杰,李绍文,杨海燕.高含水期油田地面工程现状及发展趋势[J].管道技术与设备,2011 ,5:51~53.

[2]侯桂华.原油脱水站节能降耗技术应用[J].石油规划设计,2008,19(4):41 ~43.

[3]牛彬.油田高含水期油气集输与处理工艺技术研究[J].中国石油大学胜利学院学报,2008,22(4):8~12.

[4]汤清波,钱维坤,李玉军.HNS型高效三相分离器技术[J].油气田地面工程,2007,26(6):16~17.

[5]张劲松,冯叔初,李玉星,等.油水分离用水力旋流器流动机理和应用研究[J].过滤与分离,2001,11(3):15~18.

[6]陈建玲.QK17 -2污水处理平台水力旋流器控制方案优化设计[J].中国造船,2010,51(增刊2):138~144.

[7]成仕钢.两级旋流分离工艺的应用试验研究[J].江汉石油职工大学学报,2005,18(2):33~34.

[8]杨时榜,叶学礼.油气田地面工程技术现状及发展趋势[M].北京:石油工业出版社,2011:43~44.

[9]张大安,黄耀达,马强.预脱水技术应用研究[J].内蒙古石油化工,2008,18:10~11.

水分离设备推广方案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于油水分离器方案、水分离设备推广方案的信息别忘了在本站信途科技进行查找。

扫描二维码推送至手机访问。

版权声明:本文由信途科技转载于网络,如有侵权联系站长删除。

转载请注明出处https://www.xintukeji.cn/xintu/89003.html

相关文章

现在,非常期待与您的又一次邂逅

我们努力让每一次邂逅总能超越期待

  • 效果付费
    效果付费

    先出效果再付费

  • 极速交付
    极速交付

    响应速度快,有效节省客户时间

  • 1对1服务
    1对1服务

    专属客服对接咨询

  • 持续更新
    持续更新

    不断升级维护,更好服务用户